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The effects of a finite volume fraction of polymer on the reduced osmotic pressure and the reduced diffusion 
coefficient in solutions, covering an extended concentration range, are analysed in the framework of a 
recent theoretical approach, which incorporates a renormalization group treatment of a modified interaction 
Hamiltonian. The resulting analytical functions are consistent with the large amount of experimental data 
accumulated from the literature. In the interpretation of the diffusion behaviour, over a large concentration 
interval, the concept of hydrodynamic screening plays a crucial role in obtaining a uniform picture. In the 
region of strongly overlapping chains a breakdown of the universal features of the reduced osmotic pressure 
and the reduced diffusion coefficient can be inferred from the theoretical relations. 

(Keywords: osmotic pressure; diffusion; semidilute and concentrated polymer solutions; crossover effects; hydrodynamic 
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Introduction 

It has been known for some years that renormalization 
group theory provides a framework for a universal 
description, in the form of explicit analytical functions, 
of static properties 1-8 (e.g. osmotic pressure) and 
transport phenomena 9-11 (e.g. cooperative diffusion and 
sedimentation) of flexible polymer chains in the 'effective' 
semidilute regime. Some of the theoretical predictions 
have been compared ~ 2-16 with experimental results, and 
many essential features of the theoretical models have 
been endorsed. 

An 'effective' semidilute solution may be viewed as a 
solution in which the polymer coils strongly overlap each 
other but still occupy a small volume fraction • of 
polymer (~<< 1). In this concentration region the 
theoretical approaches resort to the Edwards Hamil- 
tonian 17, extended to a many-chain system, to describe 
the large and strongly correlated fluctuations in the 
segment density as well as the gradual screening of the 
excluded-volume interactions. However, it should be 
recognized that the use of the Hamiltonian is legitimate 
only if the monomer density is sufficiently small. If this 
prerequisite is violated departures between experimental 
results and the theoretical prediction can be anticipated, 
and eventually (at sufficiently high concentration) a 
concomitant breakdown of the universality is expected. 
In a recent work ~ 5 it was found that the theoretical values 
of the reduced osmotic pressure I-IM/RTc [where H is 
the osmotic pressure, M is the molar mass, R is the gas 
constant, T is the absolute temperature and c is the mass 
concentration (mass/volume)]  became gradually smaller 
than the corresponding experimental values for poly- 
styrene at good solvent conditions with increasing degree 
of coil overlapping. This trend has been reinforced by a 
previous osmotic pressure study 18 of polystyrene at good 
solvent conditions, covering an extended concentration 
range (concentrations up to ~ 0 . 8 g c m - 3 ) ,  where a 
palpable breakdown of the universal behaviour of the 
reduced osmotic pressure was revealed at high concen- 
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trations. In order to account for the effects of a finite 
volume fraction of polymer (~),  Shiwa et al.19 constructed 
a generalized Edwards Hamiltonian, incorporating mean 
field ideas of the Flory-Huggins  type 2°'21, and with the 
aid of a renormalization group formalism calculated the 
osmotic pressure of moderate and concentrated solutions 
of flexible chains in good solvents. 

Since the translational diffusion process is governed 
by the interplay between hydrodynamic and thermo- 
dynamic properties through the relationship 22 D--- 
s ~ H / &  (where s is the sedimentation coefficient and 
OH/& is the inverse osmotic compressibility), analogous 
concentration related crossover effects as for the osmotic 
pressure are expected to show up in a comparison 
between experimental results and the theoretical diffusion 
models, where the original Edwards Hamiltonian has 
been invoked as a theoretical tool. The surmise is that if 
the effects of a finite polymer volume fraction are not 
accounted for, a gradual deviation between the experi- 
mental results and the theoretical diffusion predictions 
will occur with increasing polymer concentration. 

The aim of the present study is to construct, guided 
by the theoretical advances of Shiwa et al. 19, tractable 
analytical functions in terms of experimentally accessible 
variables, without any adjustable parameter, to analyse 
experimental osmotic pressure and diffusion data, cover- 
ing a wide concentration range. In this report a large 
amount  of experimental osmotic pressure data and 
diffusion data, collected from the literature, for poly- 
styrene at good solvent conditions are compared with 
the corresponding theoretical predictions. 

Theoretical considerations 
In the theoretical treatments of the static correlations 

of monomer density fluctuations in the 'effective' semi- 
dilute regime (low volume fraction of polymer), the 
many-chain version of the Edwards Hamiltonian consti- 
tutes a good starting point to develop renormalization 
group ideas. 



Previously, a conformation space renormalization 
group formalism together with the e = 4 - d (where d is 
the spatial dimensionality) expansion has been employed 
to derive TM an explicit analytical function, in terms of a 
universal static overlap parameter X, for the reduced 
osmotic pressure in the 'effective' semidilute range (HsD) 

MHsD _ 1 + (X/2)exp  (e/4) In ~ 
RTc  

where ~ = M , / M w  is a polydispersity parameter. In 
order to recover the correct scaling behaviour in the 
asymptotic limit and to account partially for the 
higher-order corrections of ~ the usual augmentation 
procedure 2~'9 is adopted here by replacing the factor 
(e/4) by A -  ( 2 - d v ) / ( d v - 1 )  with d = 3. The par- 
ameter v is the excluded-volume exponent characterizing 
the molecular weight dependence of the radius of 
gyration. For flexible polymers at good solvent con- 
ditions, v assumes a value of 0.588 (the most accurate 
theoretical value) 23. The dimensionless static scaling 
variable X may be expressed as X ~ c / c * ~  A2Mc 
(where c* denotes the overlap threshold concentration 
and A 2 is the second virial coefficient). In order to be 
able to make a direct comparison, without any adjustable 
parameter, between the theoretical prediction [equation 
(1)] and the experimental results, the following relation 
was derived 12 

X = [16AEMc -- 8A In(p)] /9  (2) 

In the good 'effective' semidilute regime equation (1) 
with (e/4) substituted by A = 0.3089 has been found to 
be in good agreement with experimental data, and a 
universal picture emerged. 

In this domain where the density fluctuations are 
strong the mean field theory (e.g. the classical Flory-  
Huggins theory) fails. However, as the monomer concen- 
tration increases the fluctuations will gradually become 
small and can be treated by a simple mean field theory. 
Quite recently, Shiwa et al. 19 utilized a generalized 
interaction Hamiltonian, elaborated from the Edwards 
form of the Hamiltonian in combination with the Flory-  
Huggins theory, together with a renormalization group 
scheme for the calculation of the generalized osmotic 
pressure II~ for polymer solutions covering a wide 
concentration range 

He = IIsD(X)-- kBTno[ln(1 - 0 )  + O + 02 /2]  (3) 

where ka is Boltzmann's constant and no is the solvent 
number density. The second term on the right-hand side 
of equation (3), represents the Flory-Huggins contri- 
bution. The polymer volume fraction can be cast into 
the following form 

• = p X M  1-3v (4) 

where p is a parameter which depends on the chemical 
nature of the polymer and solvent, but not on the molar 
mass of the polymer. In the treatment of Shiwa et al. 19, 
p was considered to be an adjustable variable of the 
theory. However, for a given polymer/solvent system, 
where A 2, M , / t  and c or • all are known, p can easily 
be determined. In the present study this latter procedure 
has been adopted. 

By using standard definitions and standard thermo- 
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dynamics 24 for binary systems the solvent number 
density may be expressed in terms of experimentally 
accessible quantities as 

NA 
no = voMo (1 - (1)) (5) 

where NA is Avogadro's number, M o is the solvent molar 
mass and v o is the partial specific volume of solvent. By 
combining equations ( 1 ), (3) and (5) the reduced osmotic 
pressure may be written in the form 

MI-I C 
- 1 + ( X / 2 )  

RTc  

x e x p  A l n ( ~ ) +  l - X 2  l n ( ~ + X ) +  

M [(1 - O)ln(1 - O) + O(1 - O) 
voMoc 

,6) 

It is clear from relation (6) that at sufficiently high 
concentrations, where the effects of a finite volume 
fraction of polymer cannot be ignored, the reduced 
osmotic pressure loses its universal feature due to the 
influence of the second term on the right-hand side of 
equation (6), and the equation of state will depend on 
system related properties. 

Let us now discuss diffusion properties and the effects 
of a finite polymer volume fraction on the diffusion 
behaviour. The reduced diffusion coefficient D / D  o (where 
D O is the diffusion coefficient at infinite dilution ) may be 
expressed as 14 

(O/Oo)  = (S /So )  RMT (0H/dc) (7) 

Recently, Shiwa 1° devised a scheme for a universal 
description of the reduced diffusion coefficient as a 
function of a scaling variable. This approach incorporates 
renormalization group calculations of both hydrodynamic 
and thermodynamic quantities as well as kinetic equations 
of the Ginzburg-Landau type for an analytical description 
of the effect of gradual screening of both hydrodynamic 
and excluded-volume interactions on polymer solution 
dynamics. The analysis yields a relationship which may 
be written in the following functional form 

(1 + X)  -3e/8 M 
(D/Do)  - (OH/Oc) (8) 

H(X) RT 

Here the hydrodynamic screening effect is captured 
through an enhancement factor H ( X ) ,  which describes 
the dragging effect of screening. The factor H (X) is given 
by 1° 

H ( X )  = ~-(3E/8)t~'/(x - ,,)] (9)  

with • = k2/2(1 + X). The parameter k is the inverse of 
the normalized hydrodynamic screening length 11, which 
directly describes the influence of hydrodynamic screen- 
ing on polymer solution dynamics. In the framework of 
a mode-coupling scheme and renormalization group 
calculations with the e = 4 -  d expansion, expressions 
for the evaluation of the quantity k as a function of the 
overlap parameter for polymer solutions of flexible chains 
with and without excluded-volume interactions, were 
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developed 11. In the absence of hydrodynamic screening 
k ~ 0 and H(X)  ~ 1. 

Let us now consider the reduced inverse osmotic 
compressibility (M/RT)(OH/Oc) for the two situations. 
In the region of 'effective' semidilute behaviour the 
following relation is obtained 9 by differentiating equation 
(1) 
M 

(0rl/~C)sD 
RT 

= I + { ( I  + A ) x  + A[ln(~-~ + x )  1]} 

p2  /22 
x e x p { A [ ~ l n ( # )  + (1 - ~ )  ln(# + X) + ~ ] }  

(10) 

In this context it should be mentioned that in the model 
of Shiwa x° an expression with a different appearance to 
equation (10) was devised for the calculation of the 
reduced osmotic compressibility. A slightly different 
renormalization group technique, namely, a cut-off 
method instead of the dimensional regularization scheme 
to calculate the reduced osmotic compressibility, was 
utilized. However, the theoretical models of Ohta and 
Oono 1'4 and Shiwa 1° are identical except for the detail 
of computation methods, which have different ways to 
treat higher-order corrections. Since it has been recog- 
nized 15'16 that the model of Ohta and Oono is in better 
agreement with experimental results than the relationship 
of Shiwa, we have chosen the former approach [equation 
(10)] in the present work. 

Considering now, non-negligible effects of • the 
reduced inverse osmotic compressibility may be obtained 
by differentiating equation (6). The resulting expression 
may be cast into the following generalized form 

M (OH/ac)o = M (OII/aC)sD + M 
g ~  ~ voM~o 

, ,1,  

Before we display the final relations for the reduced 
diffusion coefficient some relevant modifications will be 
introduced. Adopting the usual augmentation procedure 9 
the factor (3e/8) appearing in equations (8) and (9) is 
substituted by B = - [ ( d -  2)v - 1 ] / [ d v -  1]. With 
d = 3 and v = 0.588 the factor B = 0.5393. The static 
overlap parameter X is known to constitute a universal 
variable in displaying static properties of polymer 
solutions in the 'effective' semidilute regime. However, 
when it comes to dynamic features, such as the reduced 
diffusion coefficient, the static overlap parameter X has 
been found 9'13 to be unable to condense the experimental 
data in a universal manner. In this case the dimensionless 
variable kDc [kD expresses the first-order concentration 
dependence of D; D = Do(1 + kDC)] was reported 13 to 
be a more appropriate parameter in the description of 
universal dynamic behaviour [e.g. in a plot of (D/Do) 
versus kDc]. In order to facilitate a direct comparison 
between experimental diffusion data and the theoretical 
prediction [equation (8)combined with equation (10)] 
a dynamic scaling parameter x, analogous to the static 
variable X is introduced by an identification process 9. If 
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Reduced osmotic pressure as a function of the scaled static 
variable X, which is given by X = 2.809 x 10-2cM 0'714 for polymer- 
good solvent systems. Polystyrene/toluenCS'z8'29 : ( . )  M = 5.1 x 104; 
( O )  M = 1.19 x 10s; ( A )  M = 6.9 x 105; (V]) M = 9.0 x 10s; ( + )  
M = 9.0 x 105; ( ~ )  M = 1.9 x 106. The broken and the solid curves 
represent equations (1) and (6), respectively 

polydispersity effects are neglected the result is 

kDC 
x = (12) 

exp(A/2) -- B 

In light of the above considerations we may now 
construct explicit functional forms for the reduced 
diffusion coefficient by combining equation (8) with 
equation (10) ['effective' semidilute solution behaviour 
(superscript SD)] and with equation ( 11 ) [incorporating 
the effects of a finite volume fraction of polymer 
(superscript G)] ,  respectively. The expressions may be 
presented on the following experimentally tractable forms 

1 
( O / D o ) S ~ / ( 1  - v c )  = 

(1 + x)BH(x) 

x [ l + { ( l + A / 2 ) x + A [ l n ( V x )  1]} 

x exp{A[x~ In (#) + (1 - x~-~) ln(/~ + x) + ~1}]  

(13) 

(D/D o)°=,v/(1 - vc) 

1 M = (D/Do)SDp/(1 - vc) -f 
(1 + x)BH(x) voM o 

x [ l n ( 1 - O ) - ~  ~ ( 3 ~ + 2 ) ] 2  (14) 

where the dimensionless ~tynamic scaled variable x is 
defined by equation (12). The factor (1 - vc), where v 
is the partial specific volume of the solute, is introduced 
to approximately correct the experimental diffusion 
coefficients for backflow effects 25. 

Results and discussion 
In Figure 1, reduced osmotic pressure data for 

polystyrene of different molecular weights in toluene, 
over an extended X range, are plotted on log-log axes 
as a function of the static variable X. The variable 
X =  2.809 x 10-2cM T M  has been evaluated using 
equation (2) (with # = 1) together with the relation 
A2 (cm 3 mol g-2)  = 1.58 x 10-2M -°'2a6 reported 26 for 
the system polystyrene/toluene. Since the data represent 
molecular weights with narrow molecular weight distri- 
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Figure 2 Reduced diffusion coefficient for polystyrene systems at good 
solvent conditions as a function of the scaled dynamic variable x which 
is related to k D by x = 1.593kDC. Polystyrene/benzene3°-32: ( 0 )  
M = 7 . 0  x 10s; (-~) M = 3 . 8  x 106; (~ , )  M = 8 . 4 2  x 106. Poly- 
styrene/toluene33'34: ( O )  M = 2.0 x 10s; ( A )  M = 7.6 x 105; (r-q) 
M = 2.88 x 106. Polystyrene/tetrahydrofuran35-38 : (11) M = 3.9 x 
105; (~1,) M = 9.0 x 105; ( + )  M = 8.42 x 106; ( O )  M = 1.0 x 107 . 
The broken curves (a ' )  and (b')  represent equation ( 13 ) in the absence 
and presence of hydrodynamic screening, respectively. The solid curves 
(a) and (b) represent equation (14) in the absence and presence of 
hydrodynamic screening, respectively 

butions and it has been shown 1 that the polydispersity 
effect has a very minor influence on the numerical results 
of the reduced osmotic pressure, /~ = 1 is used in this 
work. The broken curve is calculated from equation ( 1 ), 
representing the 'effective' semidilute range. At a low 
degree of chain overlap the agreement between the 
experimental data and the theoretical representation is 
good, but at higher values of X a gradual and significant 
departure is revealed. Obviously, the theoretical model, 
based on the 'pure' Edwards Hamiltonian, seriously 
underestimates the values of the reduced osmotic pressure 
in the domain of high X values. As indicated in the 
theoretical section this trend is attributed to the effects 
of a finite volume fraction of polymer. 

The solid curve in Figure 1 has been constructed with 
the aid of equation (6) with v 0 = 1.160, M0 = 92.13, 
M = 9.0 x 105 (this molecular weight was chosen because 
the experimental data for this sample give rise to the 
highest values of X) and ~ =  63.55XM -°'764 [cf. 
equation (4)]. The value of p (63.55) was determined by 
combining equations (2) and (4) and using experimental 
data for the system polystyrene/toluene. The agreement 
between the experimental osmotic pressure data and the 
generalized theoretical model [equation (6)] is good over 
an extended X region. Due to the enhanced influence of 
the last term on the right-hand side of equation (6) with 
increasing values of ~, a gradual breakdown of the 
universality is expected. This effect has already clearly 
been demonstrated 18'~9 for concentrated solutions of 
polystyrene in good solvents. 

Figure 2 compares the experimental results (the same 
data as in ref. 15) for the reduced diffusion coefficient of 
polystyrene at good solvent conditions with the theoretical 
predictions, without any adjustable parameter, given by 
equations (13 ) and (14), respectively. The scaled dynamic 
variable x = 1.593kDc has been calculated from equation 
( 12 ) in combination with the relationships kD (cm 3 g- 1 ) = 

--3 0 76 106)  and k D ( c m  3 g - l )  4.60x l0 Mw" (Mw~<4 x = 
0.519M °'44 (M w > 4 x 10 6) reported 27 from a systematic 
study of experimental data of polystyrene in good solvent. 
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Let us first discuss the features of the theoretical 
prediction representing the 'effective' semidilute regime 
[equation (13); broken curves] with [curve (b')] and 
without [curve (a'); H (x) = 1 ] hydrodynamic screening 
effects incorporated. Curve (a') is consistent with the 
experimental data, whereas curve (b') exhibits a pro- 
gressive deviation from the experimental results at higher 
values of x. Judging from the picture depicted by only 
these two curves, one may be tempted to suggest that 
hydrodynamic screening should not be invoked in the 
description of diffusion behaviour in solutions of flexible 
chains at good solvent conditions. 

The above assumption is at variance with some 
experimental and theoretical evidence. However, we 
argue that the observed trend is merely fortuitous due 
to an underestimation of the thermodynamic factor in 
equation (13) [see also equation (11)]. This view is 
reinforced by the solid curves in Figure 2, which are 
constructed with the aid of equation (14), without any 
adjustable parameter, for the same system (polystyrene/ 
toluene) and for the same molecular weight (M = 
9.0 x 105 ) as were employed in the above analysis of the 
osmotic pressure results. In this case the relation between 

and x is given by • = 133.3xM -°'764. The numerical 
difference between this value of p and that used in 
connection with the evaluation of the osmotic pressure 
data is due to the difference between the static and 
dynamic scaling variables. The curve representing the 
generalized diffusion equation [equation (14)], without 
hydrodynamic screening [curve (a)] exhibits a marked 
divergence from the experimental points at high values 
of x, whereas curve (b) (hydrodynamic screening con- 
sidered) conforms with the experimental data. In light 
of this observation and the findings for the reduced 
osmotic pressure, a uniform picture of the diffusion 
behaviour over a wide concentration range emerges, if 
the effects of a finite volume fraction of polymer on the 
thermodynamic factor is taken into account as well as 
the effect of hydrodynamic screening. In analogy with 
the observation for the osmotic pressure, a gradual 
breakdown of the universality of diffusion with increasing 
concentration is expected also in this case. 

Conclusions 
Based on the theoretical model of Shiwa et al., 

expressions on explicit functional forms in terms of 
experimentally accessible quantities have been presented 
to analyse reduced osmotic pressure data and reduced 
diffusion coefficients of flexible polymer chains at good 
solvent conditions over an extended concentration regime. 
It is shown that a much better agreement between the 
experimental osmotic pressure data and the theoretical 
prediction, in the region of strongly overlapping chains, 
may be accomplished by utilizing a generalized relation, 
incorporating the effects of a finite volume fraction of 
polymer, for the reduced osmotic pressure, instead of 
the original uncorrected expression [equation (1)]. 
Analogous crossover effects were also observed to play 
an important role in the description of the diffusion 
behaviour in moderately concentrated solutions. The 
model that emerges is consistent with the experimental 
results only if the effect of hydrodynamic screening is 
taken into account. However, it should be noted that by 
introducing the effects of a finite volume fraction of 
polymer in the theoretical models, with the aid of a 
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F l o r y - H u g g i n s  type  i n t e r a c t i o n  H a m i l t o n i a n ,  a b r e a k -  
d o w n  of  the  un ive r sa l i t y  for  the  r e d u c e d  o s m o t i c  p re s su re  
as wel l  as for  the  r e d u c e d  di f fus ion coeff ic ient  is e x p e c t e d  
at  h i g h e r  c o n c e n t r a t i o n s .  
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